Modelling complex cracks with finite elements: a kinematically enriched constitutive model
نویسندگان
چکیده
منابع مشابه
Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملA Constitutive Model for Sands
In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the 
yield surface. In the present...
متن کاملA Constitutive Model for Sands
In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the yield surface. In the present s...
متن کاملSpecial Finite Elements for Dipole Modelling
This thesis focuses on the solution of the EEG forward problem, using the finite element method. The goal is to compare different dipole models for a current source in the human head, with a focus on Whitney type basis functions. For the current sources in the head a widely used model is the mathematical or current dipole. Its strong singularity poses a problem for numerical methods. Therefore ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Fracture
سال: 2016
ISSN: 0376-9429,1573-2673
DOI: 10.1007/s10704-016-0114-x